联系我们
Isaac Scientific Publishing
Journal of Advances in Applied Mathematics
JAAM > Volume 5, Number 4, October 2020

Least-Squares Method of EQ1rot Nonconforming Finite Element for Convection-Diffusion Problems

Download PDF  (584.1 KB)PP. 139-145,  Pub. Date:October 8, 2020
DOI: 10.22606/jaam.2020.54001

Author(s)
Zhiyun Yu, Dongyang Shi, Huiqing Zhu
Affiliation(s)
College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China
Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China
Mathematics Department, University of Southern Mississippi, Hattiesburg MS, 39406, U.S.A
Abstract
In this paper, a least-squares method of EQ_1^rot nonconforming finite element(NFE) is proposed for convection-diffusion problems. The existence and uniqueness of the approximate solutions are proved. The convergence analysis is presented and the optimal order error estimates for the stress under H(div)-norm and the displacement under broken H<sup>1</sup>-norm are derived. At last, some numerical results are presented to verify the theoretical analysis, which show that our method is stable and performs very well.
Keywords
convection-diffusion problems, EQ_1^rot NFE, least-squares method, optimal order error estimates
References
  • [1]  1. Po-Wen Hsieh, Suh-Yuh Yang, On efficient least-squares finite element methods for convection-dominated problems. Comput. Methods Appl. Mech. Engrg., 199 (2009), 183–196.
  • [2]  2. R. D. Lazarow, I. D. Mishev, P. S. Vassileveski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal., 33 (1996), 31–55.
  • [3]  3. Z. Cai, J. Mandel, S. McCormick, The finite volume element methods for diffusion equations on general triangulations. SIAM J. Numer. Anal., 28 (1991), 392–402.
  • [4]  4. M. Farhloul, A. S. Mounim, A mixed-hybrid finite element method for convection-diffusion problems. Appl. Math. Comput., 171 (2005), 1037-1047.
  • [5]  5. R. C. Almeida, R. S. Silva, A stable Petrov-Galerkin method for convection-dominated problems. Comput. Methods Appl. Mech. Engrg., 140 (1997), 291–304.
  • [6]  6. E. G. D. do Carmo, G. B. Alvarez, A new stabilized finite element formulation for scalar convection-diffusion problems: the streamline and approximate upwind/Petrov-Galerkin method. Comput. Methods Appl. Mech. Engrg., 192 (2003), 3379–3396.
  • [7]  7. P. B. Bochev, M. D. Gunzburger, Finite element methods of least-squares type. SIAM Rev., 40 (1998), 789–837.
  • [8]  8. V. John, J. M. Maubach, L. Tobiska, Nonconforming streamline-diffusion-finite element methods for convectiondiffusion problems. Numer. Math., 78 (1997), 165–188.
  • [9]  9. V. John, G. Matthies, F. Schieweck, L. Tobiska, A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems. Comput. Methods Appl. Mech. Engrg., 166 (1998), 85–97.
  • [10]  10. S. I. Petrova, L. Tobiska, P. S. Vassileveski, Multigrid methods based on matrix-dependent coarse spaces for nonconforming streamline-diffusion finite element discretization of convection-diffusion problems. East-West J. Numer. Math., 8 (3) (2000), 223–242.
  • [11]  11. P. Knobloch, L. Tobiska, The Pmod 1 element: a new nonconforming finite element for convection-diffusion problems. SIAM J. Numer. Anal., 41 (2003), 436–456.
  • [12]  12. B. Achchab1, A. Agouzal, K. Bouihat, A posteriori error estimates on stars for convection diffusion problem. Math. Model. Nat. Phenom., 5 (7) (2010), 67–72.
  • [13]  13. D. Y. Shi, X. L. Wang, A low order anisotropic nonconforming characteristic finite element method for a convection-dominated transport problem. Appl. Math. Comput., 213 (2009), 411–418.
  • [14]  14. D. Y. Shi, X. L. Wang, Two low order characteristic finite element methods for a convection-dominated transport problem. Comput. Math. Appl., 59 (2010), 3630–3639.
  • [15]  15. Q. Lin, H. Wang, S. H. Zhang, Uniform optimal-order estimates for finite element methods for advectiondiffusion equations. J. Syst. Sci. Complexity, 22 (2009), 555–559.
  • [16]  16. H. Y. Duan, G. P. Liang, Nonconforming elements in least-squares mixed finite element methods. Math. Comput., 73 (2003), 1–18.
  • [17]  17. D. Y. Shi, J. C. Ren, A least squares Galerkin-Petrov nonconforming mixed finite element method for the stationary conduction-convection problem. Nonlinear Anal: TMA., 72(3-4)(2010), 1635-1667.
  • [18]  18. Q. Lin, L. Tobiska, A. Zhou, Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation. IMA J. Numer. Anal., 25 (1) (2005), 160–181.
  • [19]  19. D. Y. Shi, S. P. Mao, S. C. Chen, An anisotropic nonconforming finite element with some superconvergence resultes. J. Comput. Math., 23 (3) (2005), 261–274.
  • [20]  20. R. Rannacher, S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Meth. PDEs., 8 (1992), 97–111.
  • [21]  21. J. Hu, Z. C. Shi, Constrained quadrilateral nonconforming rotated Q1 element. J. Comput. Math., 23 (2005), 561-586.
  • [22]  22. C. J. Park, D. W. Sheen, P1-nonconforming quadrilateral finite element methods for second order elliptic problems. SIAM J. Numer. Anal., 41 (2003), 624–640.
  • [23]  23. D. Y. Shi, J. C. Ren, W. Gong, A new nonconforming mixed finite element scheme for the stationary Navier-Stokes equations. Acta Math. Sci., 31(2) (2011), 367-382.
  • [24]  24. D. Y. Shi, C. X. Wang, A new low-order nonconfroming mixed finite element scheme for second order elliptic problems. Int. J. Comput. Math., 88(10) (2011), 2167-2177.
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.