# Journal of Advances in Applied Mathematics

### Memory Event-triggered Output Feedback Synchronization Control for Complex Dynamic Network with Bounded Distributed Delays

Download PDF (597.8 KB) PP. 89 - 111 Pub. Date: April 1, 2021

### Author(s)

**Bei Gao**^{*}

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China

### Abstract

### Keywords

### References

[1] N. Eagle and A. S. Pentland. Reality mining: sensing complex social systems. Pers. Ubiquitous Comput., 10(4):255–268, 2006.

[2] R. Pastor-Satorras, E. Smith, and R. V. Sole. Evolving protein interaction networks through gene duplication. J. Theor. Biol., 222(2):199–210, 2003.

[3] G. A. Pagani and M. Aiello. The Power Grid as a complex network: A survey. Phys. A Stat. Mech. Appl., 392(11):2688–2700, 2013.

[4] H.T. Zhang, T. Yu, J.P. Sang, and X.W. Zou. Dynamic fluctuation model of complex networks with weight scaling behavior and its application to airport networks. Phys. A Stat. Mech, Appl., 393:590–599, 2014.

[5] R. Albert, H. Jeong, and A. L. Barabasi. Internet - Diameter of the World-Wide Web. Nature, 401(6749):130– 131, SEP 9 1999.

[6] H.J. Karimi, H. R.and Gao. New Delay-Dependent Exponential H-infinity Synchronization for Uncertain Neural Networks With Mixed Time Delays. IEEE Trans. Syst., Man, Cybern. B, Cybern., 40(1):173–185, FEB 2010.

[7] J.Q. Lu and D. W. C. Ho. Globally Exponential Synchronization and Synchronizability for General Dynamical Networks. IEEE Trans. Syst., Man, Cybern. B, Cybern., 40(2):350–361, APR 2010.

[8] Z.S. Duan, J.Z. Wang, G.R. Chen, and L. Huang. Stability analysis and decentralized control of a class of complex dynamical networks. Automatica, 44(4):1028–1035, APR 2008.

[9] W. K. Wong, W.B. Zhang, Y. Tang, and X.T. Wu. Stochastic Synchronization of Complex Networks With Mixed Impulses. IEEE Trans. Circuit Syst. I, 60(10):2657–2667, OCT 2013.

[10] Q. Han, C.D. Li, and J.J. Huang. Anticipating synchronization of chaotic systems with time delay and parameter mismatch. Chaos, 19(1), MAR 2009.

[11] J.Q. Lu, C.D. Ding, J.G. Lou, and J.D. Cao. Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J. Frankl. Inst. Eng. Appl. Math., 352(11):5024–5041, NOV 2015.

[12] R. Rakkiyappan, A. Chandrasekar, J.H. Park, and O. M. Kwon. Exponential synchronization criteria for Markovian jumping neural networks with time-varying delays and sampled-data control. Nonlinear Anal.: Hybrid Syst, 14:16–37, NOV 2014.

[13] Y.J. Liu, B.Z. Guo, J.H. Park, and S.M. Lee. Nonfragile Exponential Synchronization of Delayed Complex Dynamical Networks With Memory Sampled-Data Control. IEEE Trans. Neural Netw. Learn. Syst., 29(1):118– 128, JAN 2018.

[14] J. K. Hale. Theory of Functional Differential Equations. Springer-Verlag Berlin Heidelberg, 1977.

[15] Y. Dong, J.W. Chen, and J.G. Xian. Event-triggered control for finite-time lag synchronisation of time-delayed complex networks. IET Control Theory Appl., 12(14):1916–1923, 2018.

[16] X.Wang, X.Z. Liu, K. She, and S.M. Zhong. Finite-time lag synchronization of master-slave complex dynamical networks with unknown signal propagation delays. J. Frankl. Inst. Eng. Appl. Math., 354(12):4913–4929, AUG 2017.

[17] L. Cheng, Y. Yang, L. Li, and X. Sui. Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control. Phys. A Stat. Mec. Appl., 500:273–286, 2018.

[18] J. Liu, Y.L. Zhang, C.Y. Sun, and Y. Yu. Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control. Inf. Sci., 480:261–272, 2019.

[19] H.Q. Li, X.F. Liao, G. Chen, D. J. Hill, Z.Y. Dong, and T.W. Huang. Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Netw., 66:1–10, 2015.

[20] J. Zhang, C. Peng, D.J. Du, and M. Zheng. Adaptive event-triggered communication scheme for networked control systems with randomly occurring nonlinearities and uncertainties. Neurocomputing, 174(A, SI):475–482, 2016.

[21] Z. Gu, E.G. Tian, and J.L. Liu. Adaptive event-triggered control of a class of nonlinear networked systems. J. Frankl. Inst. Eng. Appl. Math., 354(9):3854–3871, JUN 2017.

[22] L.J. Zha, E.G. Tian, X.P. Xie, Z. Gu, and J. Cao. Decentralized event-triggered H-infinity control for neural networks subject to cyber-attacks. Inf. Sci., 457:141–155, 2018.

[23] Y. Fan, L. Liu, G. Feng, and Y. Wang. Self-Triggered Consensus for Multi-Agent Systems With Zeno-Free Triggers. IEEE Trans. Autom. Control., 60(10):2779–2784, OCT 2015.

[24] J.H. Zhang and G. Feng. Event-driven observer-based output feedback control for linear systems. Automatica, 50(7):1852–1859, JUL 2014.

[25] N. Hou, H.L. Dong, W.D. Zhang, Y.R. Liu, and F. E. Alsaadi. Event-triggered state estimation for time-delayed complex networks with gain variations based on partial nodes. Int. J. General Syst., 47(5):408–421, 2018.

[26] Q Li, B Shen, J.L. Liang, and H.S. Shu. Event-triggered synchronization control for complex networks with uncertain inner coupling. Int. J. General Syst., 44(2, SI):212–225, 2015.

[27] R.Q. Pan, Y.S. Tan, D.S. Du, and S.M. Fei. Adaptive event-triggered synchronization control for complex networks with quantization and cyber-attacks. Neurocomputing, 382:249–258, 2020.

[28] G. Tian, E, K.Y. Wang, X. Zhao, S.B. Shen, and J.L. Liu. An improved memory-event-triggered control for networked control systems. J. Frankl. Inst. Eng. Appl. Math., 356(13):7210–7223, 2019.

[29] K.Y. Wang, E.G. Tian, S.B. Shen, L.N. Wei, and J.L. Zhang. Input-output finite-time stability for networked control systems with memory event-triggered scheme. J. Frankl. Inst. Eng. Appl. Math., 356(15):8507–8520, OCT 2019.

[30] C.X. Shi, G.H. Yang, and X.J. Li. Event-triggered output feedback synchronization control of complex dynamical networks. Neurocomputing, 275:29–39, 2018.

[31] Y.R. Liu, Z.D. Wang, J.L. Liang, and X.H. Liu. Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans. Syst., Man, Cybern. B, Cybern., 38(5):1314–1325, 2008.

[32] X.M. Zhang and Q.L. Han. State Estimation for Static Neural Networks With Time-Varying Delays Based on an Improved Reciprocally Convex Inequality. IEEE Trans. Neural Netw. Learn. Syst., 29(4):1376–1381, APR 2018.

[33] L. Zou, Z. Wang, H. Gao, and X. Liu. Event-Triggered State Estimation for Complex Networks With Mixed Time Delays via Sampled Data Information: The Continuous-Time Case. IEEE Trans. Cybern, 45(12):2804–2815, Oct 2015.

[34] Y.R. Liu, Z.D. Wang, Y. Yuan, and W.B. Liu. Event-Triggered Partial-Nodes-Based State Estimation for Delayed Complex Networks With Bounded Distributed Delays. IEEE Trans. Syst., Man, Cybern,. Syst., 49(6):1088–1098, JUN 2019.

[35] P. Park, J.W. Ko, and C. Jeong. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47(1):235–238, JAN 2011.

[36] P. Park, W.I. Lee, and S.Y. Lee. Auxiliary Function-based Integral/Summation Inequalities: Application to Continuous/Discrete Time-Delay Systems. Int. J. Control. Autom., 14(1):3–11, FEB 2016.

[37] YR. Liu, Z.D. Wang, and X.H. Liu. On synchronization of coupled neural networks with discrete and unbounded distributed delays. Int. J. Comput. Math., 85(8):1299–1313, 2008.

[38] Y.R. Liu, Z.D. Wang, J.L. Liang, and X.H. Liu. Synchronization of Coupled Neutral-Type Neural Networks With Jumping-Mode-Dependent Discrete and Unbounded Distributed Delays. IEEE Trans. Cybern., 43(1):102– 114, FEB 2013.

[39] R.M. Zhang, D.Q. Zeng, J.H. Park, Y.J. Liu, and S.M. Zhong. Pinning Event-Triggered Sampling Control for Synchronization of T-S Fuzzy Complex Networks With Partial and Discrete-Time Couplings. IEEE Trans. Fuzzy Syst., 27(12):2368–2380, 2019.

[40] Y.F. Qian, X.Q. Wu, J.H. Lu, and J.A. Lu. Second-order consensus of multi-agent systems with nonlinear dynamics via impulsive control. Neurocomputing, 125(SI):142–147, 2014. 9th International Symposium of Neural Networks (ISNN), Shenyang, PEOPLES R CHINA, JUL 11-14, 2012.