Isaac Scientific Publishing

Advances in Astrophysics

Analytical Relationships Between Source-receiver Distances, Redshifts and Luminosity Distances under Pure Modes of Expansion

Download PDF (892.1 KB) PP. 217 - 230 Pub. Date: November 8, 2017

DOI: 10.22606/adap.2017.24001

Author(s)

  • Denis Michel*
    Université de Rennes1. IRSET. Campus de Villejean. 35000 Rennes cedex, France

Abstract

The relationships between the redshifts, the luminosity distance and the true distances at the times of light emission and reception, are formally calculated in Euclidean spaces whose expansion is describable using simple functions: proportional to cosmic time, power law or exponential, and for the different assumptions about the origin of the redshift: kinematic, relativistic and wave stretching effects. None of these combinations gives the same results in terms of redshift, of horizon, of distances and of deviation from the Hubble law. This systematic analysis provides the limit cases of expansion scenarios.

Keywords

Space expansion, cosmological redshift, cosmological distances, informational horizon.

References

[1] Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. Pnas 15, 168-173.

[2] Hogg, D.W. 2000. Distance measures in cosmology. arxiv.org/abs/astro-ph/9905116

[3] Horedt, G. 1973. On the expanding-universe postulate. Astrophys. J. 183, 383-386.

[4] Bunn, E.F., Hogg, D.W. 2009. The kinematic origin of the cosmological redshift. Am. J. Phys. 77, 688.

[5] Einstein, A. 1905. Zur Elektrodynamik bewegter K?rper (On the electrodynamics of moving bodies) Annal. Phys. 17, 891-921.

[6] Davis, T.M., Lineweaver, C.H. 2001. Superluminal recession velocities. AIP Conf. Proc. 555, 348.

[7] Lema?tre G. 1927. Un Univers homog?lne de masse constante et de rayon croissant rendant compte de la vitesse radiale des n?lbuleuses extra-galactiques. Annal. Soc. Sci. Bruxelles, A47, 49-59.

[8] Einstein, A., de Sitter, W. 1932. On the relation between the expansion and the mean density of the Universe. Proc. Natl. Acad. Sci. U.S.A. 18, 213-214.

[9] Perlmutter, S., Schmidt, B.P., Riess, A.G. 2012. Nobel Lecture: Measuring the acceleration of the cosmic expansion using supernovae. Rev. Mod. Phys. 84, 1127-1175.

[10] Vigoureux, J.-M., Vigoureux, B. Langlois, M. A New cosmological model. INTECH Open Access Publisher, 2011

[11] Cook, R.J., Burns, M.S. 2009. Interpretation of the cosmological metric. Am. J. Phys. 77, 59-66.

[12] Melia, F., Shevchuk, A.S.H. 2012. The Rh=ct Universe. Mon. Not. R. Astron. Soc. 419, 2579.

[13] Gardner, M. 1988. Time travel and other mathematical bewilderments (New York: W.H. Freeman).

[14] de Sitter, W. 1931. The expanding universe. Scientia 49, 1-10.

[15] Harrison, E. 1993. The redshift-distance and velocity-distance laws. Astrophys. J. 403, 28-31.

[16] Riess, AG, Strolger L.-G., Tonry J., Casertano S., Ferguson H.C., Mobasher B., Challis P., Filippenko A.V., Jha S., Li W., Chornock R., Kirshner R.P., Leibundgut B., Dickinson M., Livio M., Giavalisco M., Steidel C.C., Benitez N., Tsvetanov Z. 2004. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665-687.